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ABSTRACT  

 

Epidemiological studies have shown that arsenic exposure during early 

embryogenesis can cause reduced weight gain and neurological deficits later on in life. In 

addition, in vitro and in vivo studies have indicated that arsenic suppresses neurogenesis 

and myogenesis. The exact mechanism of how arsenic causes these undesired 

developmental outcomes is poorly understood, however both skeletal muscle and sensory 

neuron development require the Wnt/β-catenin signaling pathway to initiate the specific 

differentiation of precursor cells. We were interested in determining the target cell 

population of arsenic and its metabolites.  Arsenic’s metabolites were of interest because 

they have been shown to be more toxic than arsenic itself.   

We found that arsenic and its metabolites, monomethylarsonous (MMA III) acid 

and dimethylarsinous (DMA III) acid, target a specific population of progenitor cells 

termed the neural plate border specifier (NPBS) cells by reducing the expression of 

signals required for neurogenesis (Pax3, Sox10, and NeuroD1) and myogenesis (Msx1, 

MyoD, and Myogenin).  Pluripotent P19 embryonic stem cells were differentiated into 

embryoid bodies (EBs) in the presence of 0.1μM and 0.5μM sodium arsenite, 0.01μM 

and 0.05μM MMA III, or 0.001μM and 0.005μM DMA III. The expression of myogenic 

and neurogenic signals was determined by immunohistochemistry in EBs after 2-5 days 

of differentiation. Starting on day 2, in the neurogenic pathway, and day 3 in the 

myogenic pathway, arsenic is targeting the neural plate border specifier (NPBS) cells, 

which resulted in reduced transcription factor expression of Pax3 and Msx1. Arsenic also 
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altered nuclear localization of Msx1 (day 2), MyoD (days 2-5), NeuroD1 (days 4-5), and 

altered co-localization patterns in both the neurogenic and myogenic lineages.  

After exposure to arsenic’s metabolites, MMA III and DMA III, more drastic 

patterns were seen. In the neurogenic pathway, it appears that MMA III is targeting the 

neural plate border specifier cells on day 3, while DMA III does not affect transcription 

factor expression until day 5. Co-localization patterns were again changed after exposure. 

After 3 days of MMA III and DMA III exposure, co-localization patterns were 

significantly changed in the myogenic pathway. In regards to nuclear localization 

MyoD’s nuclear localization was significantly decreased on days 3 and 5 in both the 

MMA and DMA treatments. In the neurogenic pathway, NeuroD1’s nuclear localization 

was significantly decreased in day 5 EBs after exposure to both MMA and DMA. 

Overall, these results suggest that arsenic and its metabolites are targeting the 

precursor cells to skeletal muscles and sensory neurons, and are therefore suppressing 

neurogenesis and myogenesis. 
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CHAPTER ONE 

 

LITERATURE REVIEW 

 

  

Arsenic Sources and Location 

Arsenic is naturally occurring element that can be found in water, soil, and rocks. 

Arsenic also has no odor, tasteless, and colorless (Ambrosio et al., 2014) giving it the 

potential to be very dangerous.  Even though it is natural, it is a known carcinogen and 

toxicant that is posing many threats to human health. It is the 53
rd

 most abundant element 

on Earth, and varies in concentration from 1 ppm to 10 ppm in soil, and between 1.5-1.6 

ppm in seawater (Nickson et al., 2000). However, arsenic contamination in our 

environment, especially groundwater, has become a worldwide concern and is becoming 

an epidemic in many developing countries. It has been such an issue that the World 

Health Organization (WHO) has put arsenic on its list of the top 10 chemicals of major 

health concern (WHO).  

Even though arsenic is not found in a huge abundance in earth’s crust (Wedepohl, 

1995) it is easily solubilized by ground water (Smedley and Kinniburgh, 2002) making it 

very easy for arsenic contaminate drinking water. Anthropogenic arsenic contamination 

is very common due to arsenic’s historical use in pesticides, mineral extraction, smelting, 

and extraction of fossil fuels (Edelstein, 1985). It has also been used in recent times for 

industrial, medicinal, and homicidal purposes (Ambrosio et al., 2014). 

In the past few decades, it has been estimated that over 140 million people 

worldwide have arsenic in their drinking water and food sources, with over 4 million of 

those individuals living in the United States (Ambrosio et al., 2014).  In 2013, the U.S. 
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Food and Drug Administration found that common beverages such as beer could have on 

average 2.1 µg/serving (serving: 8 fl oz) of inorganic arsenic, and found that some brands 

of brown rice contain levels of 160 ppb of arsenic (FDA, 2013). What is also interesting 

to note is that what many consider to be a healthier option in brown rice, had much higher 

levels of arsenic than did the white instant rice brands (FDA, 2013). 

 In many parts of the world, a big reason for arsenic’s contamination of drinking 

water, which is eventually used on crops, is because of contaminated well water.  A lot of 

these wells are drilled in areas where natural arsenic deposits have leached into the water 

(Ambrosio et al., 2014). Two areas that have a true epidemic of arsenic poisoning in its 

groundwater and wells is Bangladesh and West Bengal (Kirchner and Weil, 1998).  In 

Bangladesh, a country of 125 million, the estimate of people exposed to toxic levels of 

arsenic range from 35 to 77 million people (Smith et al., 2000).  There, the Ganges delta 

aquifer that is used by the public for water is contaminated with arsenic (Acharyya et al., 

1999; Kirchner and Weil, 1998). Many of the wells were originally drilled in conjunction 

with UNICEF to try and provide these areas with water, and to prevent water-borne 

diseases like cholera and typhus (Alvarez, 2001). The WHO recommends a maximum 

concentration of arsenic in drinking water of 10µg/L. However, 35% of the wells in 

Bangladesh have concentrations above 50µg/L, and 8.4% of the wells have 

concentrations above 300µg/L (Smith et al., 2000). When levels exceed these thresholds, 

negative physical symptoms can arise.  
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Adverse Health Effects 

Undesired health effects from arsenic exposure include fever, diarrhea, and skin 

rashes (Dakeishi et al, 2006). In one study, researchers examined infants that were 

exposed to Morinaga dried milk in Japan that was accidently contaminated with arsenic.  

The 381 infants examined had clinical symptoms ranging from fever, diarrhea, vomiting, 

cough, eye discharge, skin pigmentation and rash, edema, and abdominal distension 

(Dakeishi et al., 2006).  

Many diseases and conditions can develop later in life due to chronic arsenic 

exposure. These include cardiovascular disease, diabetes, hearing loss, and anemia 

(Chappell et al., 1997). Some exposed people also develop Blackfoot disease, which is a 

disease of the blood vessels that can lead to gangrene, and eventual amputation of the 

foot (Tseng et al., 2005). More serious diseases like skin, bladder, and lung cancer 

develop as well due to arsenic exposure (Tchounwou et al., 2003).  

Although arsenic has been linked to causing cancer in adulthood, it has been used 

to cure cancer. In China, researchers used arsenic trioxide in conjunction with 

chemotherapy in patients with acute promyelocytic leukemia (APL). This resulted in 

remission rates ranging from 70-90% in newly diagnosed cases, and 65-90% in patients 

who had previously relapsed (Sun et al., 1992). In a follow up study of 32 patients, 16 of 

them survived more than 5 years with some living more than 17 years after the initial 

treatment (Sun et al., 1992). Similar results were seen in the United States when twelve 

APL patients were treated with 0.06-0.2 mg/kg/body weight of arsenic trioxide. The 

patients were treated until the leukemic blasts and promyelocytes were eradicated from 
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the bone marrow (Soignet et al., 1998). Of the 12 patients treated, 11 of them went into 

remission, and the only adverse side effects seen were rashes, slight fatigue, and 

musculoskeletal pain. More recently, arsenic trioxide was used in conjunction with 

dichloroacetate to induce cell death in breast cancer cells (Sun et al., 2011). Arsenic 

trioxide was seen to inhibit complex IV of the electron transport chain leading to a 

decrease in ATP production, and apoptosis of the cells (Sun et al., 2011). 

Developmental Health Effects of Arsenic 

 Arsenic can cause many undesired developmental outcomes as well. Many 

epidemiological studies have shown that in utero exposure can lead to miscarriages, 

infantile death, decreased weight gain, cardiovascular diseases, muscular issues and 

neurological issues (Concha et al., 1998; Raqib et al., 2009). Since arsenic easily crosses 

the placental barrier, and can come in contact with the embryo (Jin et al., 2006, Concha et 

al., 1998) this may explain some of these developmental effects on the newborn. 

One town that has become a natural experiment regarding chronic arsenic 

exposure is Antofagasta, Chile. The city and its 130,000 residents have exceedingly high 

levels of arsenic in their water supply. In the 60’s the arsenic was estimated to be around 

800 ppb in some wells and many dermatological and cardiovascular issues were being 

seen in the children (Borgono et al., 1977).  During this time, one study found that over 

70% of the children (n=37, 13-14 years) who grew up drinking the contaminated water 

had cutaneous lesions (Borgono et al., 1977). However, more serious developmental 

health effects have been seen. In one study, the authors examined over 400,000 residents 

in Northern Chile. They found that the mortality for bladder cancer among men in this 
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region was six times than that of the rest of Chile (Smith et al., 1998). In addition, lung 

cancer, skin cancer, and kidney cancer mortality was all significantly increased (Smith et 

al., 1998) 

 In West Bengal, India researchers studied over 200 women’s pregnancies. 

Amount of arsenic exposure was measured throughout the pregnancies and it was found 

that some wells had more than 200 µg/L of arsenic (Ehrenstein et al., 2005). Women who 

were exposed to these wells during their pregnancy then had a 6-fold increase of 

stillbirths (Ehrenstein et al., 2005). Even if the child is born to a mother who has been 

exposed to these high levels of arsenic, they often times have very low birth weights. 

Birth weight is a known to be very good indicator of a newborn’s overall health and 

physical and psychological development (Biswas et al., 2006). In one area in West 

Bengal, an epidemiological study looked at birth weight in newborns and found 31% of 

the newborns had low birth weight (< 2.5 kg, n=487) in the Puruliya region (Biswas et 

al., 2006). These newborns with low birth weight then have a much higher chance of 

dying, with 80 percent of neonatal deaths and 50 percent of infant deaths occur in 

conjunction with a low birth weight (Paul et al., 2002). Even in areas where arsenic 

exposure is not nearly as high (<50µg/L), the children born there are about 60g lighter 

than a child not exposed to arsenic (Hopenhayn et al., 2003). These results have been 

replicated in animal studies as well. When mice were exposed in utero to 10µg/L of 

arsenic, the arsenic cohort had low birth weights, weighing significantly less than the 

mice that were born to mothers not exposed to arsenic (Kozul-Horvath et al., 2012). 
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 In adolescence, other issues from arsenic exposure are often seen including many 

neurological deficits and lower intelligence quotients (IQ).  For example, in a follow-up 

study on the infants in Japan who had been exposed to arsenic-contaminated powered 

milk found that even fourteen years later, the poisoned individuals had higher incidences 

of abnormal electroencephalograms and lower intelligence quotients when compared to 

the control group (Dakeishi et al., 2006). In Bangladesh, children who have been 

chronically exposed to arsenic levels of 50µg/L or greater had significantly lower IQ’s, 

scoring up to 10 points lower than children who grew up drinking water that contained 

less than 5µg/L of arsenic (Wasserman et al., 2004). Another study done in South 

Carolina found increased mental retardation and developmental disability in children 

whose mothers were pregnant while living on land that had higher than average levels on 

arsenic in the soil (Liu et al., 2010). Of the 6048 mother child pairs, 1490 cases (24%) of 

mental retardation or developmental disability were seen (Liu et al., 2010). These 

neurological issues may be explained by arsenic’s ability to accumulate in the brain 

(Koehler et al., 2014; Xi et al., 2010). One study exposed astrocytes, a glial cell found in 

the brain and spinal cord that help form the blood-brain barrier and repair the brain and 

spinal cord following an injury, to arsenite and arsenate. After just 8 hours of exposure to 

1mM of arsenite, the astrocytes already had altered cell morphology and increase in 

lactate dehydrogenase, which is released in response to tissue damage (Koehler et al., 

2014). In addition arsenite was found inside the viable astrocytes after arsenite and 

arsenate exposure (Koehler et al., 2014). 
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In addition to these neurological deficits and lower IQ’s, sensorimotor deficits, 

impaired gaits, and muscle weakness is seen as well. One study found that 35-85% of 

people in regions like West Bengal and parts of Bangladesh where arsenic contamination 

is rampant have some sort of neuropathy and muscle weakness (Chakraborti et al., 2003). 

After an electromyographic test they found around 10% of the people chronically 

exposed to high levels of arsenic developed sensorimotor deficits and had impaired gait 

(Chakraborti et al., 2003; Mukherjee et al., 2003).  

P19 Cells 

The mouse P19 cell line is derived from a teratocarcinoma in mice and provides a 

good model to examine arsenic’s effects on cell lineage formation. They are pluripotent 

stem cells that can be induced to differentiate into any of the three germ layers, and show 

similar signaling pathways seen during early mouse embryogenesis (Kultima et al. 2010; 

Marikawa et al., 2009; McBurney, 1993). One of these crucial developmental pathways is 

the Wnt/ β-catenin pathway. This pathway is involved in the regulation of neural crest 

development and somitogenesis (Clevers et al., 2012; Schmidt et al., 2008). When mouse 

embryonic stem cells are deficient in β-catenin they exhibit self-renewal (Lyashenko et 

al., 2009); however, when β-catenin is overexpressed the stem cells will differentiate into 

muscle and neuronal cell lineages (Otero et al., 2004). We can use these muscle and 

neuronal lineages to examine arsenic’s effect on early embryogenesis. 

Our earlier studies have shown when P19 cells are induced to form embryoid 

bodies (EBs) while being exposed to 0.1µM, 0.5µM, and 1.0µM sodium arsenite, 

neurogenesis and myogenesis was suppressed (Hong and Bain, 2012).  The delayed 
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development in the cells exposed to arsenic was shown to be due the repression of many 

transcription factors (TFs), including Pax3, MyoD, myogenin, and NeuroD (Hong and 

Bain, 2012). The reduced expression of these TFs was thought to be due the repression of 

the Wnt/β-catenin pathway during early embryogenesis, due to reduced β-catenin 

expression (Hong and Bain, 2012).  Additional in vitro studies using different cells lines 

have shown similar degeneration to neuronal and muscle cells due to arsenic exposure. 

Reduced myelination of axons was seen when rats had 10mg of arsenite added to their 

drinking water daily (Garcia-Chavez et al., 2007), and when Neuro-2a cells were exposed 

to arsenic trioxide, neurite outgrowth was inhibited (Wang et al., 2010). Also, exposure 

of 1-2ppm of arsenic trioxide in mice’s drinking water resulted in degeneration of their 

neuronal cells in the cerebellum and cerebrum (Piao et al., 2005). 

Neural Plate Border Specifiers  

With these findings, it is of interest to identify the target cell population of 

arsenic. One potential target is the progenitor cells of the neural crest (NC). The NC is a 

migratory cell population that is unique to vertebrates and will form the peripheral 

nervous system and glia, many elements of the craniofacial skeleton, and muscle 

progenitors (Hong and Saint-Jeannet, 2007; Le Douarin and Kalcheim, 1999). Just after 

gastrulation, the ectoderm has three distinct regions including the non-neural ectoderm, 

neural plate, and the neural plate border (NPB) which is found in the middle (Hong and 

Saint-Jeannet, 2007; Milet and Mosoro-Burq, 2012). Numerous signals, including the 

Wnt signaling pathway (Garnett et al., 2012), are then sent into the NPB which induces 

the presumptive NC cells to become competent to the neural crest specifier signals 
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(Betancur et al., 2010). These cells will then undergo an epithelial to mesenchyme 

transition (EMT), delaminate, and migrate away from the neural tube (Trainor, 2005). 

The signals that induce the NC come from genes that are collectively known as the neural 

plate border specifiers (NPBS) (Betancur et al., 2010). These genes include many muscle 

cell lineage TFs Msx1, MyoD, and Myogenin, which are required for myogenesis, and 

neuronal cell lineage TFs Pax3, Sox10, and NeuroD1, which are required for 

neurogenesis during early embryonic development. Not much is known about the 

temporal-spatial aspects of these signals (Garnett et al., 2012). However, it is well known 

from previous studies that arsenic disrupts EB formation (Stummann et al., 2008), 

myogenesis (Garcia-Chavez et al., 2007), and neurogenesis (Piao et al., 2005; Wang et 

al., 2010) in mouse embryonic stem cells. 

Methylated Metabolites 

 

 In addition to inorganic arsenic, organic arsenic compounds are of major concern 

as well. Arsenic can be found in four oxidation states, +V, +III, 0, and –III, with 

pentavalent arsenate (As
V
) and trivalent arsenite (As

III
) being the most common species 

found (Sharma and Sohn, 2009). Once ingested, 80-90% of the arsenic is absorbed in the 

gastrointestinal tract (Freeman et al., 1995; Pomroy et al., 1980) and arsenic’s 

biotransformation processes create much more toxic methylated compounds.  First, 

inorganic arsenic is reduced between pentavalent and trivalent forms (Vahter, 2002) and 

a methyl group is added from S-adenosylmethionine (SAM) through a SAM-dependent 

As
III

 methyltransferase (Lin et al., 2002). This leads to the production of the methylated 

metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) (Vahter, 
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2002; Styblo et al., 2002) which are the primary metabolites excreted in urine (Styblo et 

al., 2002).  

The most toxic methylated species produced are monomethylarsonous acid 

(MMA III) and dimethylarsinous acid (DMA III) and have been found to increase in 

concentration during pregnancy (Gardner et al., 2011) which can exert toxic effects on 

the developing fetus. Epidemiological studies have shown that pregnant women in 

chronically exposed areas like Bangladesh have increased concentrations of arsenic in 

their urine. In Matlab, Bangladesh urinary arsenic levels were as high as 84µg/L at 30 

weeks gestation (Tofail et al., 2009). Similar results were found in Chilean women whose 

urinary arsenic levels increased from 36µg/L at 20 weeks gestation, to 47µg/L at 36 

weeks gestation (Hopenhayn et al., 2003). 

In vitro studies have examined the effects of these methylated metabolites on 

cells. Cultured human and rat hepatocytes were exposed to As
III

 and As
V
 and methylated 

species as well at concentrations ranging from 0.4-20µM (Styblo et al., 2000). The 

pentavalent species were not found to be cytotoxic; however, the trivalent species 

significantly decreased cell viability in a concentration dependent manner (Styblo et al., 

2000). Another study found the even levels of MMA (III) as low as 1µM stopped the 

differentiation of mouse embryonic stem cells into cardiomyocytes (Wang et al., 2014).  

Thesis Goals and Objectives 

 

The goal of this thesis was to determine if arsenic affects the number and/or 

location of the neural plate border specifier cells. With previous studies showing arsenic 

reduces neuronal and skeletal differentiation during early embryogenesis through the 
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Wnt/β-catenin signaling pathway, we were interested in determining the target cell 

population of arsenic. We hypothesized that arsenic was targeting the neural plate border 

specifier cells, and its downstream targets, by reducing the signals required for 

neurogenesis and myogenesis. An additional area of research of this study is to examine 

if a mono-methylated or di-methylated species of arsenic is more or less toxic to the cells. 

My goals for this thesis were two-fold: 

1) To determine if arsenic affects the number and/or location of neural plate 

border specifier cells. Pluripotent P19 cells will be cultured and induced to from 

embryoid bodies. The embryoid bodies will be exposed to sodium arsenite and 

immunohistochemistry will be used to determine expression levels of the transcription 

factors involved.  

2) Examine the level of developmental toxicity of a mono-methylated and di-

methylated species of arsenic. The same methods described from above will be used, but 

the embryoid bodies will be cultured with a mono-methylated and di-methylated species 

of arsenic. 
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Abstract  

Epidemiological studies have shown correlation between arsenic exposure and 

adverse developmental outcomes. Exposure to arsenic and its metabolites during early 

embryogenesis can cause reduced weight gain and neurological deficits later on in life. 

Additionally, in vitro and in vivo studies have shown that arsenic suppresses neurogenesis 

and myogenesis through Wnt/β-catenin signaling pathway by stopping the differentiation 

of precursor cells. This study used P19 mouse embryonic stem cells to determine the 

target cell population of arsenic its metabolites. Pluripotent P19 cells were exposed to 

0.1μM and 0.5μM sodium arsenite, 0.01μM and 0.05μM MMA III, and 0.001μM and 

0.005μM DMA III. On day 2, in the neurogenic pathway, and day 3 in the myogenic 

pathway, arsenic is targeting the differentiation of neural plate border specifier (NPBS) 

cells, which resulted in a 1.2-fold reduction of Pax3 and a 1.5-fold reduction in Msx1 

protein. Arsenic also altered the nuclear localization of Msx1 on day 2 by 1.5-fold, 

resulting in reductions in both MyoD nuclear expression on days 2-5, and in NeuroD1 

nuclear expression on days 4-5.  Arsenic exposure also altered co-localization patterns in 

both the neurogenic and myogenic lineages.  

After exposure to arsenic’s metabolites, MMA III and DMA III, MMA III was 

seen to target the neural plate border specifier cells on day 3 in both the neurogenic and 

myogenic pathways, while DMA III does not affect transcription factor expression until 

day 5. MyoD’s nuclear localization was significantly decreased on day 3 and 5 in both 

the MMA and DMA treatments. In the neurogenic pathway, NeuroD1’s nuclear 

localization was significantly decreased by1.4-fold in day 5 EBs after exposure to both 
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MMA and DMA. In conclusion, these results suggest that arsenic and its metabolites are 

targeting the precursor cells to skeletal muscles and sensory neurons, and are therefore 

suppressing neurogenesis and myogenesis. 

 

Key Words: arsenite, dimethylarsinous acid, P19 cells, monomethylarsonous 

acid, myogenesis, neurogenesis 
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Introduction 

 

Arsenic is a known toxicant that poses many threats to human health. It is a 

naturally occurring element found in bedrock, and its weathering has resulted in arsenic 

contamination of groundwater in many parts of the world (Kirchner and Weil, 1998; 

Yang et al., 2009). In the West Bengal region of India, it is estimated that more than 26 

million individuals have been exposed to drinking water contaminated with arsenic (As) 

(Mondal et al., 2010).  Although the World Health Organization recommends a 

maximum concentration of arsenic in drinking water of 10 µg/L, some wells in West 

Bengal have up to 531 µg/L As (Desbarats et al., 2014). Arsenic has also been found as a 

contaminant in food, such as rice, with levels ranging from 0.15-0.36 mg/kg (Zavala and 

Duxbury, 2008).  For an average adult consuming 400 g of rice per day containing 0.25 

mg/kg, their intake is approximately 100 µg As, which is equivalent to five times the 

amount of arsenic an adult would get from drinking 2L of water at the 10 µg/L limit 

(Zavala et al., 2008). In particular, increased arsenic levels in the urine of pregnant 

women and children have been seen due to the consumption of rice products (Davis et al., 

2012). 

Once inside the body, arsenic can be methylated by arsenic methyltransferases in 

a series of metabolism steps, with monomethylarsonous acid (MMA) and 

dimethylarsinous acid (DMA) being the primary species excreted in the urine (Styblo et 

al., 2002).  It is known that the concentrations of MMA and DMA increase during 

pregnancy (Concha et al., 1998; Hopenhayn et al., 2003; Gardner et al., 2011). For 

example, a study of Chilean pregnant women whose drinking water contained at least 40 



www.manaraa.com

 

 

 22 

μg/L determined that at ~20 weeks of gestation, average urinary arsenic levels were 36 

μg/L, while at ~36 weeks of gestation, urinary arsenic levels had increased to 54 μg/L 

(Hopenhayn et al., 2003). Furthermore, DMA levels increased from 30 μg/L to 47 μg/L.  

In vitro studies have shown that some arsenic metabolites, especially the trivalent 

species, are more toxic than arsenic itself. For example, MMA (III) at concentrations 

between 0.5-1 μM inhibited the differentiation of mouse ES-D3 stem cells into 

cardiomyocytes more strongly than arsenic trioxide or DMA (III) (Wang et al., 2014). In 

another study, MMA (III) caused a decrease in myeloid progenitor colonies at 

concentrations as low as 0.13μM (Ferrario et al., 2008). Since there is an increase in 

arsenic biotransformation and methylated metabolites during pregnancy, continuous 

exposure to these metabolites could also have adverse effects on the developing fetus. 

Epidemiological studies have shown that in utero exposure to arsenic can lead to 

increased occurrence of neonatal death, low birth weight, and miscarriages (Concha et al., 

1998; Raqib et al., 2009).  It has been show that during pregnancy, exposure to even 

moderate levels of arsenic in drinking water (<50 µg/L) can result in a 57g reduction in 

birth weight (Hopenhayn et al., 2003), and levels 67-85 µg/L are correlated with a 3-fold 

increase in miscarriages (Ogata et al., 2014). Mice exposed to 10µg/L As in utero and 

during the postnatal period weighed significantly less than control mice (Kozul-Horvath 

et al., 2012). These outcomes are thought to result from arsenic’s ability to cross the 

placental barrier, and come in contact with the embryo (Jin et al., 2006, Concha et al., 

1998).  For example, cord blood and placenta contained an average of 9 and 34 µg/L 

arsenic, respectively, in women drinking water containing 200 µg/L of arsenic, compared 
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to a placental concentration of 7µg/kg in women who were not exposed to arsenic 

(Concha et al., 1998). 

Embryonic arsenic exposure has also been correlated with many neurological 

deficits, such as decreased pattern memory (Tsai et al., 2002) and mental retardation in 

adolescents (Dakeishi et al., 2006, Liu et al., 2010).  A follow-up study fourteen years 

after infants were exposed to As-contaminated dry milk found that the adolescents had 

lower intelligence quotients when compared to the control group (Dakeishi et al., 2006). 

Similar results were found in children from Bangladesh.  When their drinking water 

contained >50 μg/L arsenic, they scored significantly worse on IQ tests than children who 

drank water from wells with <5 μg/L (Wasserman et al., 2004) Since arsenic has the 

ability to accumulate in the brain, which has been shown in rats (Xi et al., 2010), this may 

explain the connection between increased embryonic exposure to arsenic and 

neurological deficits.   Collectively, these studies suggest that arsenic impacts the 

development of neurons and skeletal muscle.   

In vitro studies have also shown similar impacts of arsenic on cellular 

development and differentiation.  For example, when Neuro-2a cells were exposed to 

3μM arsenic trioxide, neurite outgrowth was inhibited (Wang et al., 2010).  Our lab has 

previously showed that neurogenesis and myogenesis was suppressed when P19 mouse 

stem cells were exposed to 0.5µM arsenite, due to reductions  of many developmentally-

important transcription factors (TFs), such as Pax3, MyoD, Myogenin, and NeuroD 

(Hong and Bain, 2012). Since arsenic appears to impact skeletal muscle and neurons 

http://www.sciencedirect.com/science/article/pii/S0161813X11000568#bib0205
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during embryogenesis, there is likely a common progenitor cell type that is a target of 

arsenic.  

One potential target cell type is the progenitors of the neural crest (NC), termed 

neural plate border specifier (NPBS) cells. These cells send out signals into the neural 

plate border (NPB) region to induce neural crest (NC) formation and also delineate the 

location of the somites (Sauka-Spengler and Bronner-Fraser, 2008.) Numerous signals, 

including the Wnt signaling pathway (Garnett et al., 2012), are then sent into the NPB 

region, which induces the presumptive NC cells to become competent to the neural crest 

specifier signals (Betancur et al., 2010). These cells will then undergo an epithelial to 

mesenchyme transition (EMT), delaminate, and migrate away from the neural tube 

(Trainor, 2005). The signals that induce the NC come from genes that are collectively 

known as the neural plate border specifiers (NPBS) (Betancur et al., 2010). The signals 

produced include many transcription factors that are required for neurogenesis, such as 

Pax3, Sox10, and NeuroD (Howard, 2005), and required for myogenesis, such as Msx1, 

MyoD, and Myogenin (Yokoyama and Asahara, 2011). 

The objective of this study was to determine whether arsenic specifically targets 

the neural plate border specifier cells during embryogenesis, thereby impairing 

appropriate differentiation into sensory neurons and skeletal muscle cells.  Further, we 

wanted to examine whether the metabolites of arsenic differed in their ability to reduce 

cell differentiation.  Our results suggest that early exposure to arsenite and its methylated 

metabolites target the differentiation of neural plate border specifier cells by reducing the 

expression of Pax3, Sox10, and NeuroD1 in the neurogenic pathway, and Msx1 in the 
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myogenic pathway. 

 

Materials and Methods 

P19 cell culture and differentiation of embryoid bodies 

The mouse P19 mouse embryonal carcinoma cell line (ATCC, Manassas, VA) 

was maintained in α-MEM containing 7.5% bovine calf serum (Hyclone, Logan, UT), 

2.5% fetal bovine serum (Mediatech, Manassas, VA), 1% L-glutamine, and 1% 

penicillin/streptomycin (designated as growth medium) at 37°C in a humidified incubator 

containing 5% CO2. The medium was changed every 48 hours.  

To form embryoid bodies and induce differentiation, P19 cells were aggregated 

using the hanging drop method (Wang and Yang, 2008). Briefly, P19 cells were 

trypsinized and suspended in differentiation medium (growth medium with 1% dimethyl 

sulfoxide) with 0, 0.1, and 0.5 µM sodium arsenite at a density of 500 cells/20 µl drop. 

These concentrations correspond to 7.5 and 37.5 µg/L arsenic.  Each replicate contained 

96 drops (n=3 replicates per concentration and per day).  The hanging drops were 

allowed to form into embryoid bodies (EBs) for 2 days, after which, each drop was 

transferred to a 96-well ultralow attachment plate containing 70 µl of fresh differentiation 

medium with 0, 0.1, or 0.5µM arsenite. The EBs were collected at days 2, 3, 4, and 5, 

fixed in 10% neutral buffered formalin (NBF) overnight at 4
o
C, dehydrated in ethanol, 

cleared in xylene, embedded in paraffin, and then sectioned for use in 

immunohistochemistry. 
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Synthesis of monomethylarsonous acid (As
III

(CH3)(OH)2, MMA(III)) 

 

 Synthesis of the MMA(III) precursor [As(CH3)O]n was performed as reported 

(Cullen et al., 1989) with minor modifications.  Arsenic trioxide (20 g, 101.1 mmol) was 

dissolved in aqueous sodium hydroxide solution (100 mL, 0.01 M) before adding methyl 

iodide (126 mL) and heating to reflux for 24 h. After cooling, ethanol (100 mL) was 

added to precipitate a white solid that was then filtered and dried, yielding disodium 

methylarsonate (16.48 g). Disodium methylarsonate was then dissolved in warm water 

(60 mL), and sulfur dioxide (generated in situ
4
 as described below) was bubbled through 

the solution for 15-20 min. The resulting solution was heated to boiling for 2 min, cooled 

to 0 
o
C, and neutralized with sodium carbonate until bubbling ceased. The neutralized 

solution was evaporated to dryness and was extracted with benzene (other similar 

solvents such as toluene did not work for this extraction). Benzene was removed in vacuo 

to yield [As(CH3)O]n as a white solid (7.5 g, 69.5% yield). The 
1
H NMR (CDCl3) 

spectrum was consistent with reported values (Cullen et al., 1989), and the MALDI mass 

spectrum showed a single peak at 106.8 m/z for [As(CH3)O + H
+
].  The desired 

MMA(III) product was formed by dissolving [As(CH3)O]n in water (Cullen et al., 1989; 

Mass et al., 2001). 

 

Synthesis of dimethylarsonous acid (As
III

(CH3)2OH, DMA(III)) 

Synthesis of this compound was performed as reported (Burrows and Turner, 

1920) with minor modifications.  Cacodylic acid (12.5 g, 90.5 mmol) and potassium 

iodide (40 g, 240.9 mmol) were dissolved in water (50 mL), and sulfur dioxide 
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(generated in situ) (Descriptive Inorganic Chemistry, 2006) was bubbled through the 

solution for 10 min. A 1:1 solution of concentrated hydrochloric acid and water (25 mL) 

was then added periodically to the reaction mixture over the course of 30 min until a 

yellow oil formed and elemental sulfur precipitated. The oil layer was separated, dried 

over CaCl2, and distilled to afford dimethylarsonous acid (16.8 g, 80% yield). The 

melting point of the purified compound was -35 ˚C, consistent with the reported value 

(Burrows and Turner, 1920). The 
1
H NMR spectrum of DMA(III) in CDCl3 showed a 

single resonance at  1.97, and the MALDI mass spectrum showed a single peak at 123 

m/z for [As
III

(CH3)2OH + H
+
]. 

 

In situ synthesis of SO2  

Sodium metabisulfite (Na2S2O5,10 g) was added to a two-neck, round-bottomed 

flask (250 mL) and concentrated sulfuric acid (100 mL) was added dropwise periodically 

as effervescence ceased. From this flask, a vacuum adaptor attached to tubing with a 

glass pipette at the end was used to bubble SO2 through the reaction solutions as 

described (Descriptive Inorganic Chemistry, 2006). 

 

Embryoid body exposure to MMA and DMA  

To derive appropriate monomethylarsonous acid (MMA) and dimethylarsinous 

acid (DMA) concentrations, dose-response experiments were carried out using varying 

MMA (0-0.1µM) and DMA (0-0.01µM) concentrations.  The P19 cells were aggregated 

into embryoid bodies as described above and allowed to differentiate for 12 days, 
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changing the medium every 48 hours.  Cells were examined visually under the 

microscope for viability and differentiation (data not shown).  Concentrations of 0.01 and 

0.05µM MMA, and 0.001 and 0.005µM DMA were chosen as appropriate levels that 

inhibited differentiation at the highest concentration without causing overt cellular death.  

P19 cells were cultured and differentiated as described above. On days 3 and 5, the EBs 

were collected, fixed in 10% NBF, and then used for immunohistochemical analysis as 

described above. 

 

Immunohistochemistry 

The fixed and embedded EBs were cut in 5 µm sections, placed on slides, 

deparaffinized, and rehydrated in graded ethanol washes.  Antigen retrieval was carried 

out with citric acid buffer (pH=6) and then microwaved. The slides were blocked (1X 

PBS, 5%BSA, 0.05% Tween-20) for 1 hr.  Primary antibodies were incubated at a 1:200 

dilution overnight at 4
o
C, and included Pax3 (Gene Tex no. GTX100663), Sox 10 

(Abnova no. H00006663-M01), NeuroD1 (Abcam no. AB60704), Msx1 (Sigma-Aldrich 

no. SAB2500650), MyoD (Santa Cruz no. SC304), and Myogenin (Imgenex no 

IMG131).   The secondary antibodies (1 µg/ml) conjugated to Alexa Fluor 488 (anti-

goat), Alexa Fluor 488 (anti-mouse), Alexa Fluor 594 (anti-rabbit) or Alexa Flour 647 

(anti-mouse) (Invitrogen) were incubated with the slides, which were counterstained with 

DAPI (Invitrogen).  Alexa Fluor 488 (anti-goat), Alexa Fluor 594 (anti-rabbit) and Alexa 

Fluor 647 (anti-mouse) were multiplexed together for Msx1, MyoD and Myogenin 

staining. Alexa Fluor 594 (anti-rabbit) and Alexa Fluor 647 (anti-mouse) were 
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multiplexed together for Pax3 and NeuroD1 staining. Alexa Fluor 488 (anti-mouse) was 

used for Sox10 staining. Slides were examined by conventional immunofluorescence on a 

Nikon Ti Eclipse Inverted Microscope. 

 

Analysis of protein expression 

To determine the overall expression of each transcription factor, its intensity was 

calculated using ImageJ following the protocol developed Arques et al., 2012.  Briefly, a 

region of interest (ROI) was defined around each embryoid body in the blue (DAPI) 

channel and an integrated density value (IDV) calculated. This was then repeated for each 

channel of interest. Next, ten representative nuclei covering different sizes and intensities 

throughout the blue channel ROI were marked using the elliptical selection tool, and an 

average IDV was calculated.  Next, the blue channel IDV was divided by the mean 

nucleus value, resulting in the average number of cells present in each ROI. Then, to 

calculate individual protein content per EB, each respective channel IDV (green, red, far 

red) was divided by the average number of cells. 

To examine nuclear localization of specific transcription factors, and co-

localization of multiple transcription factors, a 50 µm x 100 µm grid was overlaid in the 

bottom right-hand corner of each image.  Approximately 100 cells were counted per 

image and scored as to whether each transcription factor was localized in the nucleus of 

the cell, and whether two or more transcription factors were co-localized together. 
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Statistical analysis 

For image intensity, the replicates (n=3) of each treatment, day, and transcription 

factor were averaged together and statistical significance determined by ANOVA 

followed by Tukey’s (p<0.05).  Nuclear localization and co-localization numbers were 

converted into percentages for each treatment, day, and transcription factor(s) (n=3) and 

statistical significance determined by ANOVA followed by Tukey’s (p<0.05).   

 

Results 

Time course of transcription factor expression and nuclear translocation in P19 cell-

derived embryoid bodies 

 

To determine if arsenic or its metabolites targeted the neural plate border specifier 

(NPBS) cells and impacted their differentiation, a time-course of transcription factor 

expression during embryoid body formation was first determined.  Key protein markers 

of NPBS cells include Msx1 and Pax3 (Sauka-Spengler and Bronner-Fraser, 2008; 

Betancur et al., 2010).  Along the neurogenic lineage, NPBS cells differentiate into neural 

crest (NC) progenitor cells by expressing the transcription factor Sox10 (Sauka-Spengler 

and Bronner-Fraser, 2008). The NC progenitor cells then differentiate into NC cells, 

expressing the transcription factor NeuroD1 before developing into sensory neurons 

(Betancur et al., 2010). Along the myogenic lineage, NPBS cells differentiate into 

myogenic progenitor cells, expressing the transcription factor MyoD (Miner and Wold; 

1991; Ridgeway et al., 2000). The myogenic progenitor cells then differentiate into 

myocytes, expressing Myogenin, and then finally develop into Myotubes (Ridgeway et 
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al., 2000). To determine the temporal aspects of each transcription factor, its expression 

was examined in day 2, 3, 4, and 5 embryoid bodies (EBs). 

In the neurogenic lineage, Pax3, a marker of neural plate border specifier (NPBS) 

cells, and Sox10, a marker of neural crest progenitors, had steady, medium expression 

throughout days 2-5 (Table 1).  NeuroD1, a neural crest cell marker, is not expressed on 

days 2-3, but has high expression on day 4, and medium expression on day 5 (Table 1). 

In the myogenic lineage Msx1, a NPBS cell marker had low expression on day 2, 

high expression days 3-4, and medium expression on day 5 (Table 1). MyoD, a myogenic 

progenitor marker, expression has medium expression throughout days 2-5 (Table 1). 

Myogenin, which is a marker for myocytes, is not expressed on days 2-4, and has low 

expression on day 5 (Table 1). 

When looking at the percent nuclear localization, on day 2 only Pax3 has at least 

50% nuclear localization (Table 1; Figure 1C).  Sox10, Msx1, and MyoD are mainly 

found in the cytoplasm with 1-10% nuclear localization on day 2 (Table 1; Figure 1C). 

Sox10 and Msx1 stay this way throughout days 2-5 (Figure 1C-4C), while MyoD’s 

translocation to the nucleus increases on days 3-5 (Table 1; Figure 2C-4C).  NeuroD1 is 

not expressed until day 4, but once expressed, it is predominantly expressed in the 

nucleus on days 4 and 5 (Table 1; Figure 3 and 4C). Myogenin, which is not expressed 

until day 5, is predominantly found in the cytoplasm (Table 1; Figure 4C). 

 

Arsenic targets neural plate border specifier cells  

 

To determine whether neural plate border specific cells are the target cell 

population of arsenic, embryoid bodies (EBs) were exposed to 0, 0.1, and 0.5µM sodium 
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arsenite and expression of transcription factors along the muscle and neural lineages 

examined.  After 2 days of exposure, the 0.1 and 0.5µM treated cells showed a significant 

15-19% decrease in Pax3 intensity (Figure 1 A and B).  After 3 days of arsenic exposure, 

Sox10 expression was also significantly decreased by 30% and 51% in the 0.1 and 0.5 

µM treatments, respectively (Figure 2). After 4 and 5 days of arsenic exposure, NeuroD1 

expression was decreased by 23% in the 0.5 µM treatment (Figure 3A and B; Figure 4A 

and B).  In the neurogenic pathway, it appears that arsenic is targeting the neural plate 

border specifier cells starting on day 2, which results in reduced transcription factor 

expression indicative of both neural crest progenitor cells and neural crest cells (Table 2).  

Within the muscle lineage, only Msx1 expression was significantly decreased (34%) in 

the 0.5 µM treatment on day 3 (Figure 2 A and B).  No other transcription factor levels 

were altered on any of the remaining days due to arsenic exposure (Table 2).   

 

Monomethylarsonous acid (MMA III) and dimethylarsinous acid (DMA III) targets 

neural plate border specifier cells 

 

Since methylated arsenical metabolites often have higher toxicity than that of the 

inorganic species (Ferrario et al., 2008; Wang et al., 2014), P19 cells were exposed to 

MMA(III) and DMA(III) for either 3 or 5 days, and the expression of transcription 

factors along the muscle and neural lineages were examined.   After 3 days of exposure to 

MMA , Msx1, MyoD, Pax3 and Sox10 expression were significantly decreased in the 

0.05 µM treatment by 22%, 11%, 7%, and 26%, respectively (Figure S1; Figure 5 A). 

After 5 days of MMA exposure, only the neurogenic lineage was affected with Pax3, 
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Sox10 and NeuroD1 showing a significant reduction in expression of 10%, 11%, and 

13%, respectively in the 0.05 µM treatment  (Figure S2; Figure 6A). 

None of the transcription factor levels were reduced after 3 days of DMA 

exposure (Figure S3; Figure 7 A). However, after 5 days of DMA exposure, Msx1, 

MyoD and Myogenin were all significantly reduced by 17%, 12%, and 22%, respectively 

(Figure S4; Figure 8 A). In the neurogenic pathway, Sox10 and NeuroD1 showed a 

significant decrease in the 0.005 µM treatment by 13% and 9% (Figure S4; Figure 8 A). 

In the neurogenic pathway, it appears that MMA is targeting the neural plate 

border specifier cells on day 3 while DMA does not affect transcription factor expression 

until day 5 ( Table 4).  

 

Arsenic alters nuclear localization of transcription factors 

 

In addition to examining overall transcription factor expression, their cellular localization 

was also examined. In the myogenic pathway after 2 days of arsenic exposure, Msx1 

nuclear localization was significantly decreased by 1.5-fold, while MyoD nuclear 

expression was reduced by 3.4-fold in the 0.5µM treatment (Figure 1C).  On days 3, 4, 

and 5, MyoD nuclear localization continues to be reduced in the 0.5 µM treatment by 2.2, 

1.2-, and 1.2-fold, respectively (Figure 2-4C). On both days 4 and 5, NeuroD1 nuclear 

expression was significantly reduced in the 0.5 µM treatment by 1.1- and 1.4-fold, 

respectively (Figure 3-4C).  
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Monomethylarsonous acid (MMA III) and Dimethylarsinous acid (DMA III) alters 

nuclear localization of transcription factors 

 

After 3 days of exposure to MMA III (0.05 µM) and DMA III (0.005 µM), MyoD 

nuclear localization was significantly decreased by 2-fold and 1.5-fold (Figure 5B and 

7B; Table 5).  After 5 days of exposure to MMA III and DMA III, MyoD nuclear 

localization was again significantly decreased by 1.1-fold and 1.3-fold, at the highest 

concentrations (Figure 6B and 8B). In addition, NeuroD1 nuclear localization was 

significantly decreased in both the MMA III and DMA III treatments at the highest 

concentrations after 5 days of exposure by 1.4-fold (Figure 5C and 7C). 

 

Arsenic alters co-localization patterns  

In addition to looking at overall intensity and nuclear localization of the 

transcription factors, their co-localization patterns within the cells were examined as well. 

In the myogenic pathway, Msx1 and MyoD co-localized together predominately in the 

cytoplasm on days 2-4.  However, the frequency of them being together in the same cell 

drops from 98% on day 2, to 73% on day 3, and only 38% on day 4 (Figures 1-3).  When 

treated with arsenic, on day 2 of differentiation, the overall co-localization of these two 

transcription factors is decreased by 1.5-fold (Figure 1).  By differentiation day 4, arsenic 

exposure does not alter the overall percentage of cells co-expressing Msx1 and MyoD, 

however, arsenic does significantly increase the percentage of cells expressing these 

transcription factors exclusively in the cytoplasm from 34% to 42% (Figure 3).  

In the neurogenic pathway, Pax3 and NeuroD1 are expressed in the same cells 82-

84% of the time on days 4 and 5.  Their co-expression is predominately located in the 
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nuclei (Figure 3-4), although this drops from 77% on day 4 to 66% on day 5.  When cells 

are exposed to arsenic, there is a significant shift towards the co-expression being in the 

cytoplasm rather than in the nuclei, such that on day 5, co-localization of Pax3 and 

NeuroD in the nucleus drops from 66% of cell to 48% of cells.    

 

Monomethylarsonous acid (MMA III) and dimethylarsinous acid (DMA III) alters co-

localization patterns 

 

After exposure to MMA, similar co-localization patterns were seen in the 

myogenic pathway.  For example, the frequency of Msx1 and MyoD being expressed in 

the same cell on day 3 of differentiation decreases from 78% in the controls to 66% in the 

0.05 µM MMA group (Figure 5).  With DMA, while there is not an overall reduction in 

Msx1 and MyoD expression in the same cell, there is a shift in cellular localization 

patterns.  DMA exposure reduces the nuclear co-expression of Msx1 and MyoD by 3.6-

fold (Figure S3). Interestingly, neither MMA nor DMA alter the co-localization of Pax3 

and NeuroD on day 5 of differentiation (Figure S2 and S4). 

 

Discussion 

 

The results from this study show that arsenic and its methylated metabolites 

(MMA and DMA) inhibit neurogenesis and myogenesis in P19 cells by targeting the 

neural plate border specifier cells. In addition, arsenic and its metabolites were shown to 

alter nuclear localization, and co-localization patterns of the key markers involved in 

neurogenesis and myogenesis.  
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 Starting on day 2 of sodium arsenite exposure, it was already apparent that the 

neural plate border specifier (NPBS) cells were being targeted. In the neurogenic lineage, 

in both the 0.1 and 0.5 µM treated cells, a significant decrease in Pax3 intensity was seen. 

Similar findings have been found in our lab. After P19 cells were exposed to 0.1 and 0.5 

µM sodium arsenite Pax3 protein was reduced in day 2 EBs (Hong and Bain, 2012). It is 

known that during embryogenesis, Pax3, a marker of NPBS cells, is activated by the 

Wnt/β-catenin pathway (Marikawa et al., 2009). However, in order for neural crest 

specification to occur, Zic1 need to be activated at the same time as Pax3 (Betancur et al., 

2010). Pax3 alone is only capable of causing moderate induction of the neural crest 

program followed by migration and differentiation (Milet et al., 2013). Zic1 expression 

alone activates snail1, an early neural crest specifier (Plouhinec et al., 2014). Once 

activated, the Pax3/Zic1 combination activates a cascade of genes involved in neural 

plate border formation, including snail2, another neural crest specifier, and Sox10 

activation later on during neurulation (Milet et al., 2013). The co-activation of these TFs 

causes additional NPBS expression and the neural crest to begin its EMT, migration, and 

differentiation (Milet et al., 2012). The Pax3/Zic1 combination then helps regulate the 

differentiation of neurons and skeletal muscle by activating further transcription factors 

required for myogenesis and neurogenesis (Ridgeway et al., 2000). In addition to the 

Pax3/Zic1 co-activation, Pax3 has recently been found to target itself. It was found that 

there are Pax3 binding sites upstream of its promoter (Plouhinec et al., 2014), indicating 

that there is a positive feedback loop in addition to the Pax3/Zic1 co-expression that is 

driving the neural crest gene regulatory network. 
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The reduction in Pax3 expression may help explain the decrease in Sox10, a 

marker of neural crest progenitors, on day 3, and a reduction in NeuroD1, a neural crest 

cell marker, on days 4 and 5. As mentioned before, the Pax3/Zic1 co-expression, in 

addition to the positive feedback loop of Pax3 on itself, activates a cascade of genes 

involved in neurogenesis, including Sox10 (Milet et al., 2013). Studies have shown that 

Pax3 and Sox10 physically interact in complex signaling pathways and protein-protein 

interactions (Lang and Epstein, 2002). Once Pax3 is bound to the DNA, it interacts with 

Sox 10 via the Pax3 paired domain (PD) (Lang and Epstein, 2002) resulting in increased 

transcriptional activity. Normally, Sox10, a marker of neural crest progenitors, then 

activates Islet1 (Isl1) whose role is to carry out the terminal differentiation of neurons 

involving activation of basic helix-loop-helix genes such as NeuroD (Radde-Gallwitz et 

al., 2004). 

Normally, Sox10 expression begins when neural crest progenitors start to migrate 

from the neural tube and its expression starts to decrease as the cells differentiate into 

neural crest cells, which express NeuroD1 (Britsch et al., 2001). It makes sense that if 

there is a reduction on Pax3 on day 2, that there would be a reduction in subsequent 

transcription factors, including Sox10 and NeuroD1 leading to a reduction in 

neurogenesis. 

Regarding the muscle lineage, the NPBS cells were again being targeted. This 

was apparent due to the significant decrease in the expression of the NPBS cell marker 

Msx1 on day 3.  It is interesting to note that no other transcription factor levels were 

altered on any of the remaining days due to arsenic exposure (Table 2). One possible 
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explanation is the protein-protein interaction between Msx1 and Pax3. Normally, Msx1 

expression overlaps the expression of Pax3, as shown in migrating limb muscle 

precursors (Bendall et al., 1999).  Pax3 expression is then downregulated once myogenic 

regulatory transcription factors are expressed (Kuang et al., 2006; Goulding et al., 1994; 

Williams and Ordahl, 1994), such as MyoD. These muscle precursors are committed to 

form myoblasts, which express markers such as MyoD. Pax3 then promotes the 

delamination and migration of these muscle precursors from the neural tube 

(Buckingham, 2007; Bajard et al., 2006).  In our study, there was a decrease in Msx1 

intensity on day 3 with no decrease of subsequent markers such as MyoD or Myogenin. 

This could due to the fact that since Msx1 expression has decreased, there is a decrease in 

the Msx1-Pax3 protein-protein interaction, and Pax3 is still able to activate MyoD 

expression, as seen in previous studies (Buckingham, 2007; Bendall et al., 1999). 

 With arsenic’s methylated metabolites; monomethylarsonous acid (MMA III) and 

dimethylarsinous acid (DMA III), some differences between the treatments were seen.  In 

the neurogenic pathway, there was an early decrease in Pax3 and Sox10 on day 3 after 

MMA exposure, but not after 3 days of DMA exposure.  It seems that MMA targets the 

NPBS cells early on, where DMA does not. There was then a subsequent decrease in 

expression of NeuroD1 on day 5 in both the MMA and DMA treatments, indicating that 

they were targeting the neural crest cells.  With the myogenic pathway’s response to 

MMA III and DMA III treatment, there was an early decrease in Msx1 and MyoD 

expression seen on day 3 in the MMA treatment, but not the DMA treatment, potentially 

indicating again that MMA is targeting the NPBS cells much earlier than DMA, and 
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possibly that the DMA concentrations were too low to cause an effect. There were then 

no subsequent decreases in any markers on day 5 in the MMA treatment, but all of the 

myogenic markers (Msx1, MyoD, Myogenin) were decreased in the DMA treatment on 

day 5. These findings, first, show that methylated metabolites are more toxic to the cells 

at a much lower concentration than sodium arsenite, which is consistent with other 

studies (Wang et al., 2014; Ferrario et al., 2008). The methylated metabolites have been 

shown to have a high binding affinity to thiol groups in proteins and are very good at 

inhibiting enzymes (Styblo etl., 1997)   It is also interesting to note that P19 appear to 

have arsenic methylation capabilities. Arsenite methyltransferase (As3MT) is the enzyme 

that transfers the methyl group from SAM turning arsenite into MMA (Albores et al., 

1992), and at least its transcript is present in stem cells both before and after 

differentiation into embryoid bodies (Supplementary Figure 5). Second, these results 

suggest that the neural lineage seems to be affected much more than the myogenic 

lineage after exposure to MMA III and DMA III.  This is also confirmed when looking at 

the sodium arsenite exposures.  

Finally, nuclear localization and co-localization of the markers, NeuroD1 and 

MyoD are altered during the differentiation process in exposure to sodium arsenite (Table 

3), MMA III and DMA III (Table 5). It appears that arsenic and its metabolites are 

inhibiting the translocation of the markers to the nucleus. Arsenic itself could be targeting 

the transcriptional complex of these markers.  Normally, all of the basic helix-loop-helix 

proteins (bHLH) bind to a consensus E-box sequence (CANNTG) (Berkes and Tapscott, 

2005).  MyoD forms a heterodimer with E-protein, a sub-family of bHLH proteins, by 
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interacting with the HLH domains (Lassar et al., 1991; Murre et al., 1989) which mediate 

additional bHLH dimerization (Berkes and Tapscott, 2005).  MyoD then activates further 

gene transcription by binding to E-boxes in the promoter region of the skeletal muscle 

genes (Tapscott, 2005). Many of these binding sites recognize sub-families of the bHLH 

proteins like NeuroD (Tapscott, 2005). Arsenic then could be blocking the MyoD and E-

box transcriptional complex by interfering post-translational modifications of MyoD.  

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) both 

interact with MyoD, switching it from a repressor state, to an activator (Berkes and 

Tapscott, 2005). HATs transfer an acetyl group from acetyl-coA, which has been shown 

to increase during the differentiation stage of myogenesis (Polesskaya et al., 2001), which 

then causes the transfer of histones H2A/H2B from DNA to chaperone proteins (Ito et al., 

2000). This then allows transcription factors, like MyoD, to get to the DNA and bind with 

the E-box forming the transcriptional complex (Bergstrom et al., 2002). In myotubes, the 

complex formed includes MyoD, and HAT-proteins p300 and PCAF which then allows 

MyoD to stably bind to the E-box of additional myogenic genes (Puri et al., 1997).  

Arsenic then could be interfering with HATs, and stopping the formation of these 

complexes. Without MyoD translocation to the nucleus and binding to the E-box, no 

further signal transduction is occurring, which then results in the decrease in the 

differentiation of the precursors into myotubes and sensory neurons. 

In conclusion, our results indicate that As, MMA III, and DMA III all suppresses 

skeletal muscle and sensory neuron formation by targeting NPBS cells during 

embryogenesis in P19 mouse embryonic stem cells. MMA III was shown to be the most 
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toxic to the cells, followed by DMA III, and sodium arsenite. The metabolites toxicity is 

of great concern due to the fact that they are increased during pregnancy and can cause 

miscarriages, and many detrimental neurological and physical conditions later on in life. 

This study also sheds light on some of the temporal and spatial aspects on the neurogenic 

and myogenic signals involved after exposure to arsenic and its metabolites. In addition, 

it provides insight on how exposure to arsenic and its metabolites can affect 

differentiation of skeletal muscle and sensory neurons, and shows the effectiveness of 

using embryonic stem cells to study the determination of cell fates. 
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Figure 1.  Arsenic decreases Pax3 intensity, and Msx1 and MyoD nuclear 

localization in day 2 embryoid bodies 

After exposure to 0, 0.1, and 0.5 µM arsenic for two days, embryoid bodies were fixed, 

embedded, and stained for transcription factor expression.  Representative images are 

shown (A; n=3 per group).  Intensity values were averaged, and are presented as relative 

fluorescence after normalization to the control group + standard deviation (B).  Nuclear 

localization was determined by placing a 50µm x 100µm grid on each image. The cells 

(n=100) where the counted and examined for nuclear localization of each marker. 

Nuclear localization is presented as % nuclear localization + standard deviation (C).  

Statistical differences were determined by ANOVA followed by Tukey’s (*; p<0.05 ).  

Although myogenin and NeuroD1 expression were examined, neither of the transcription 

factors are expressed on day 2. 

 

A. 

B. 
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Figure 2.  Arsenic decreases Sox10 intensity, and MyoD nuclear localization in day 3 

embryoid bodies 

After exposure to 0, 0.1, and 0.5 µM arsenic for three days, embryoid bodies were fixed, 

embedded, and stained for Msx1, MyoD, Pax3, and Sox10 expression.  Representative 

images are shown (A; n=3 per group).  Intensity values (B) and nuclear localization (C) 

were calculated as in Figure 1. Statistical differences were determined by ANOVA 

followed by Tukey’s (*; p<0.05 ). 

A. 

B. 
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Figure 3.  Arsenic decreases NeuroD1 intensity, and MyoD and NeuroD1 nuclear 

localization in day 4 embryoid bodies 

After exposure to 0, 0.1, and 0.5 µM arsenic for four days, embryoid bodies were fixed, 

embedded, and stained for transcription factor expression.  Representative images are 

shown (A; n=3 per group).  Intensity values (B) and nuclear localization (C) were 

calculated as in Figure 1. Statistical differences were determined by ANOVA followed 

by Tukey’s (*; p<0.05 ). 

A. 

B. 
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Figure 4.  Arsenic decreases NeuroD1 intensity and nuclear localization in day 5 

embryoid bodies 

After exposure to 0, 0.1, and 0.5 µM arsenic for five days, embryoid bodies were fixed, 

embedded, and stained for Msx1, MyoD, Myogenin, Pax3, Sox10, and NeuroD1 

expression.  Representative images are shown (A; n=3 per group).  Intensity values (B) 

and nuclear localization (C) were calculated as in Figure 1. Statistical differences were 

determined by ANOVA followed by Tukey’s (*; p<0.05 ).  

A. 

B. 
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Figure 5.  MMA(III) MyoD and Pax3 nuclear localization in day 3 embryoid bodies 

After exposure to 0, 0.01, and 0.05 µM MMA for three days, embryoid bodies were 

fixed, embedded, and stained for transcription factor expression. (Representative images 

are shown in Figure S1, n=3 per group).  Intensity values (A) and nuclear localization (B) 

were calculated as in Figure 1. Statistical differences were determined by ANOVA 

followed by Tukey’s (*; p<0.05 ). 

A. 

B. 
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Figure 6.  MMA(III) decreases MyoD and Pax3 nuclear localization in day 5 

embryoid bodies 

After exposure to 0, 0.01, and 0.05 µM MMA for five days, embryoid bodies were fixed, 

embedded, and stained for Msx1, MyoD, Myogenin, Pax3, Sox10, and NeuroD1 

expression.  (Representative images are shown in Figure S2, n=3 per group). Intensity 

values (A) and nuclear localization (B) were calculated as in Figure 1. Statistical 

differences were determined by ANOVA followed by Tukey’s (*; p<0.05 ) 
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Figure 7. DMA(III) decreases MyoD nuclear localization in day 3 embryoid bodies 

After exposure to 0, 0.001, and 0.005 µM DMA for three days, embryoid bodies were 

fixed, embedded, and stained for transcription factor expression. (Representative images 

are shown in Figure S3, n=3 per group).  Intensity values (A) and nuclear localization (B) 

were calculated as in Figure 1. Statistical differences were determined by ANOVA 

followed by Tukey’s (*; p<0.05 ). 
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Figure 8. DMA(III) decreases MyoD and NeuroD1 nuclear localization in day 5 

embryoid bodies 

After exposure to 0, 0.001, and 0.005 µM DMA for five days, embryoid bodies were 

fixed, embedded, and stained for Msx1, MyoD, Myogenin, Pax3, Sox10, and NeuroD1 

expression. (Representative images are shown in Figure S4, n=3 per group).  Intensity 

values (A) and nuclear localization (B) were calculated as in Figure 1. Statistical 

differences were determined by ANOVA followed by Tukey’s (*; p<0.05 ). 
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Table 1.  Time course of transcription factor expression and nuclear translocation in 

P19 cell-derived embryoid bodies.   

 Expression (days)
a
  Nuclear localization (days)

b
 

 2 3 4 5  2 3 4 5 

Neural lineage          

Pax3 

(neural plate border cells) 
++ ++ ++ ++  +++ ++++ ++++ +++ 

Sox10 

(neural crest progenitors) 
++ ++ ++ ++  + + + + 

NeuroD1 

(neural crest cells) 
- - +++ ++  - - ++++ +++ 

Muscle lineage          

Msx1 

(neural plate border cells) 
+ +++ +++ ++  + + + + 

MyoD 

(myogenic progenitor) ++ ++ ++ ++  + ++ ++++ 
+++

+ 

Myogenin 

(myocytes) 
- - - +  - - - + 

a
Relative expression values; “ –“:  not expressed; “”+”:  low expression; “++”:  medium 

expression; “+++”: high expression. 
b
Average percent nuclear localization:  “ –“:  not expressed; “”+”:  1-10% nuclear 

localization; “++”:  11-50% nuclear localization; “+++”: 51-70% nuclear localization; 

“++++”:  >71% nuclear localization. 
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Table 2.  Changes in overall transcription factor expression after exposure to 0.1 

and 0.5 µM arsenic during P19 cell differentiation.   

 Day 2 Day 3 Day 4 Day 5 

Neural Lineage     

Pax3 

(neural plate border 

cells) 

    

Sox10 

(neural crest 

progenitors) 

    

NeuroD1 

(neural crest cells) 
X X 

  

Muscle Lineage     

Msx1 

(neural plate border 

cells) 

    

MyoD 

(myogenic progenitor) 
    

Myogenin  

(myocytes) 
X X X  

 

An arrow indicates reduced expression, a dash indicates no change in expression, and an 

X indicates that the TF was not expressed on that day. 
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Table 3.  Changes in overall transcription factor expression after exposure to 

monomethylarsonous acid (MMA) and dimethylarsinous acid (DMA) during P19 

cell differentiation.   

 Day 3 Day 5 

 iAs MMA DMA iAs MMA DMA 

Neural 

Lineage 

      

Pax3  

(neural plate 

border cells) 

      

Sox10  

(neural crest 

progenitors) 

      

NeuroD1  

(neural crest 

cells) 

X X X    

Muscle 

Lineage 

      

Msx1  

(neural plate 

border cells) 

      

MyoD  

(myogenic 

progenitor) 

      

Myogenin 

(myocytes) 
X X X    

An arrow indicates reduced expression, a dash indicates no change in expression, and an 

X indicates that the TF was not expressed on that day. 
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Table 4.  Changes in the nuclear translocation of transcription factors after 

exposure to monomethylarsonous acid (MMA) and dimethylarsinous acid (DMA) 

during P19 cell differentiation.   

 Day 3 Day 5 

 iAs MMA DMA iAs MMA DMA 

Neural 

Lineage 

      

Pax3  

(neural plate 

border cells) 

      

Sox10  

(neural crest 

progenitors) 

      

NeuroD1  

(neural crest 

cells) 

X X X    

Muscle 

Lineage 

      

Msx1  

(neural plate 

border cells) 

      

MyoD  

(myogenic 

progenitor) 

      

Myogenin 

(myocytes) 
X X X    

An arrow indicates reduced expression, a dash indicates no change in expression, and an 

X indicates that the TF was not expressed on that day. 
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Table 5.  Changes in the nuclear translocation of transcription factors after 

exposure to monomethylarsonous acid (MMA) and dimethylarsinous acid (DMA) 

during P19 cell differentiation.   

 MMA DMA 

 Day 3 Day 5 Day 3 Day 5 

Neural Lineage     

Pax3  

(neural plate border 

cells) 

    

Sox10  

(neural crest 

progenitors) 

    

NeuroD1  

(neural crest cells) 
X  X  

Muscle Lineage     

Msx1  

(neural plate border 

cells) 

    

MyoD  

(myogenic 

progenitor) 

    

Myogenin 

(myocytes) 
X  X  

An arrow indicates reduced expression, a dash indicates no change in expression, and an 

X indicates that the TF was not expressed on that day. 
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Supplementary Figure 1.  MMA (III) decreases Msx1, MyoD, Pax3, Sox10 intensity 

in day 3 embryoid bodies. 
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Supplementary Figure 2.  MMA(III) decreases Pax3, Sox10 and NeuroD1 intensity 

in day 5 embryoid bodies. 
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Supplementary Figure 3. DMA(III) caused no marked decreases in transcription 

factor intensity in day 3 embryoid bodies. 
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Supplementary Figure 4. DMA(III) decreases Msx1, MyoD, Myogenin, Sox10 and 

NeuroD1 intensity in day 5 embryoid bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. 
Control 0.001M As 0.005M As 

Msx1 

MyoD 

Myogenin 

 Pax3 

NeuroD1 

Pax3 + 

NeuroD1 

 Sox10 

Msx1 + 
MyoD + 

Myogenin 



www.manaraa.com

 

 

 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5. Differentiating P19 cells contain arsenic 

methyltransferase. 

 

Arsenic methyltransferase (As3MT) transcript levels in differentiating P19 cells, which 

suggests that they are fully capable of methylating arsenic. 
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CHAPTER THREE 

 

CONCLUSION 

 

Even with our knowledge that chronic arsenic exposure has a negative effect on 

development, the exact mechanisms of how arsenic causes these undesired 

developmental outcomes is still poorly understood. We already knew that arsenic disrupts 

embryoid body formation (Stummann et al., 2008), myogenesis (Garcia-Chavez et al., 

2007), and neurogenesis (Piao et al., 2005; Wang et al., 2010), but hopefully my study 

has now shed some light on the temporal and spatial aspects of the NPBS signals 

involved during neurogenesis and myogenesis. It appears that arsenic targets the neural 

plate border specifier cells.  Since these cells arise early during embryogenesis and give 

rise to cell types such as the neural crest (Hong and Saint-Jeannet, 2007; Le Douarin and 

Kalcheim, 1999), this targeting could account for why arsenic can impact structures as 

diverse as the elements of the craniofacial skeleton, muscle progenitors, melanocytes, and 

parts of the nervous system and glia. 

This study has also demonstrated the harmful effects that arsenic and its 

metabolites can exert on cells and the usefulness of using cell lines to examine cell fates. 

It is particularly alarming that arsenic’s metabolites MMA III and DMA III can target the 

NPBS cells at much lower concentrations than arsenic itself. With these metabolites 

increasing during pregnancy (Davis et al., 2012) this is very worrying for any expecting 

parents, especially those who live in areas with very high levels of arsenic contamination 

in their water supply including areas in Mexico, Chile, India, and Bangladesh. Some of 

the wells in these countries can have to 500 µg/L (Desbarats et al., 2014), which is 50 
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times the limit set by the World Health Organization. In addition, Chilean pregnant 

women whose drinking water had arsenic levels around 40 μg/L had increased urinary 

arsenic levels (Hopenhayn et al., 2003). By gestational week 36 urinary arsenic levels had 

increased to 54 μg/L and urinary DMA levels had increased to 47 μg/L (Hopenhayn et 

al., 2003). Studies in Matlab, Bangladesh have shown urinary arsenic levels up to 89µg/L 

as early as gestational week 8 in pregnant women exposed to water with >50 µg/L arsenic 

(Rahman et al., 2010). These urinary arsenic levels translate to an odds ratio for a 

spontaneous abortion of 1.31 for women <20, but for women >40 years old, the odds 

ratio jumps to 4.5 (Rahman et. al, 2010).   

In addition to a rise in urinary arsenic levels, blood arsenic levels have been to 

increase as well. In Argentina, pregnant women whose water contained 200 µg/L of 

arsenic had 9 µg/L of arsenic in their cord blood, which was almost as high as the 

maternal blood which contained 11 µg/L of arsenic (Concha et al., 1998). Another study 

had similar findings. In Bangladesh, pregnant women who were exposed to water 

containing 90.5 µg/L had cord blood arsenic levels of 23.1 µg/L, with over 31% of it 

being in the form of MMA (Hall et al., 2007).  Both of these studies show that arsenic is 

easily transported from the placenta to the fetus. This was confirmed when looking at the 

placental arsenic levels and the baby’s urine. There was 34µg/kg of arsenic in the 

placenta late in gestation in exposed women, but only 7µg/kg for non-exposed women 

(Concha et al. 1998). Regarding the baby’s urine, it was found that it contained on 

average 80µg/L of arsenic during the first two days, and was still elevated as high as 

30µg/L at 4.5 months of age (Concha et al., 1998). This is particularly worrying due to 
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the fact that in our study we found that levels as low as 0.005µM DMA, or 0.375µg/L has 

adverse effects on cells in vitro. 

Research now needs to focus on identifying exactly what thresholds these harmful 

effects start to appear. In addition, much more resources need to be dedicated to looking 

at arsenic’s metabolites, and carrying our more in vivo studies examining what diseases 

appear at certain thresholds. We aren’t sure at exactly what threshold things like 

cutaneous lesions, Blackfoot disease, and cancer start to appear. Many genetic factors 

including methylation and metabolism efficiency comes into play. It has been shown that 

the rate of excretion of As and its metabolites increases as methylation efficiency 

increases (Vahter, 1999). However, methylation efficiency is known to vary between 

children and adults, with women having much higher methylation rates than men, 

especially during pregnancy (Vahter, 1999).  

However, what we do know is that arsenic exposure around the world is an 

epidemic. Even in the United States over 4 million people have harmful levels of arsenic 

in their drinking water (Ambrosio et al., 2014). People in countries such as Bangladesh, 

India, Chile and Mexico are in need of help. This help could be as simple as education 

about arsenic contamination, painting contaminated wells red and non-contaminated ones 

green, and even installing filtering systems to remove the arsenic from the water. It is 

also very important, even in the United States, to keep on monitoring arsenic levels in our 

food and drinks to help establish more robust safety standards. 

 

 



www.manaraa.com

 

 

 74 

References 

1. Ambrosio, F., Brown, E., Stolz, D., Ferrari, R., Goodpaster, B., Deasy, B., 

Distefano, G., Roperti, A., Cheikhi, A., Garciafigueroa, Y., Barchowsky, A. 2014. 

Arsenic induces sustained impairment of skeletal muscle and muscle progenitor 

cell ultrastructure and bioenergetics. Free Radical Biology and Medicine. 74:64-

73. 

 

2. Concha, G., Vogler, G., Lezcano, D., Nermell, B., and Vahter, M. 1998. Exposure 

to inorganic arsenic metabolites during early human development. Toxicol. Sci. 

44: 185–190.  

 

3. Davis, M.A., Mackenzie, T.A., Cottingham, K.L., Gilbert-Diamond, D., Punshon, 

T., Karagas, M.R., 2012. Rice consumption and urinary arsenic concentrations in 

U.S. children. Environ. Heal. Perspect. 120, 1418–1424. 

 

4. Desbarats, A. J., Koenig, C. E. M., Pal, T., Mukherjee, P. K., Beckie R. D. 

Groundwater flow dynamics and arsenic source characterization in an aquifer 

system of west bengal, india. Water Resources Research. 5 (6):4974-5002. 

 

5. García-Chávez, E., Segura, B., Merchant, H., Jiménez, I., and Del Razo, L. M. 

2007. Functional and morphological effects of repeated sodium arsenite exposure 

on rat peripheral sensory nerves. J. Neurol. Sci. 258: 104–110 

 

6. Hall, M., Gamble, M., Slavkovich, V., Liu, X., Levy, D., Cheng, Z., van Geen, 

A., Yunus, M., Rahman, M., Pilsner, J. R., Graziano, J. 2007. Determinants of 

arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and 

homocysteine concentrations in maternal-newborn pairs. Env. Health. Perspect. 

115(10):1503-1509.  

 

7. Hong, C. S., Saint-Jeannet, J. P. 2005. Sox proteins and neural crest development. 

Cell and Developmental Biology 16: 694-703. 

 

8. Hopenhayn, Huang, Christian, Peralta, Ferreccio, Atallah, Kalman. 2003. Profile 

of urinary arsenic metabolites during pregnancy. Environmental Health 

Perspectives 111(16): 1888-1891. 

 

9. Le Douarin, N., & Kalcheim, C. 1999. The neural crest. Cambridge University 

Press. No 36. 

 

10. Piao, F., Ma, N., Hiraku, Y., Murata, M., Oikawa, S., Cheng, F., Zhong, L., 

Yamauchi, T., Kawanishi, S., and Yokoyama, K. 2005. Oxidative DNA damage 

in relation to neurotoxicity in the brain of mice exposed to arsenic at 



www.manaraa.com

 

 

 75 

environmentally relevant levels. J. Occup. Health 47: 445–449. 

 

11. Rahman, Perrson, Nermell, Arifeen, Ekstron, Smith, Vahter. 2010. Arsenic 

exposure and  risk of spontaneous abortion, stillbirth, and infant mortality. 

Epidemiology 21:797-804. 

 

12. Stummann, T. C., Hareng, L., and Bremer, S. 2008. Embryotoxicity hazard 

assessment of cadmium and arsenic compounds using embryonic stem cells. 

Toxicology 252: 118–122. 

 

13. Vahter, M. 1999. Methylation of inorganic arsenic in different mammalian 

species and population groups. Science Progress. 82:69-88. 

 

14. Wang, X., Meng, D., Chang, Q., Pan, J., Zhang, Z., Chen, G., Ke, Z., Luo, J., and 

Shi, X. 2010. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK 

signaling pathway. Environ. Health Perspect. 118: 627–634. 


	Clemson University
	TigerPrints
	12-2014

	Arsenic Targets Neural Plate Border Specifier Cells In P19 Cells
	Christopher McCoy
	Recommended Citation


	tmp.1422289085.pdf.eLCOT

